Where Electricity Comes From: Generation & Production

9 minute read Graham Lumley Last update August 2023

electricity in light bulbs

Electricity, an essential element of modern life, is integral to everything from powering our homes to charging our electronic devices. But what are the processes and sources that contribute to its generation? In this article, we dive deep into the methods and principles of generating energy for electricity and explore the different electricity sources that fuel it.

As we take a closer look at electricity generation, we’ll answer questions such as:

  • How do you get electricity?
  • Where does electrical energy come from?
  • What are some sources of electricity examples?
  • Where does electricity come from in the U.S.?

How is Electricity Generated? 

Most electricity is generated from power plants that utilize steam turbines to convert mechanical (also called kinetic) energy into electrical energy. The rotation of the turbine spins the rotor, a set of magnets or electromagnets, inside the core of the stator, a coil of wires. This rotational movement generates a changing electromagnetic field, or voltage, which creates an electric current when run through a conductor. The electric current can then be delivered from the plant via power lines to provide electricity to homes and businesses.

The rotation of the turbines can be fueled from several sources including wind, water, and heat. Keep reading to learn more about the different types of power plants and their fuel sources.

how power plants generate electricity

Thermal Power Plants

Where does most electricity come from? Currently, most of the world’s electricity is produced by thermal power plants that burn fossil fuels such as coal, oil, or natural gas to heat water and produce steam. The steam then drives a turbine connected to an electric generator, converting the mechanical energy into electricity.

Hydroelectric Power Plants

These large power plants can use the energy from flowing or falling water to drive a turbine connected to a generator. The kinetic energy of the moving water is converted into mechanical energy in the turbine and then into electrical energy in the generator.

wind power farm

Wind Turbines

Wind turbines convert the kinetic energy in wind into electrical energy. As the wind turns the blades of the turbine, the mechanical energy generated drives an electric generator.

Solar Power Plants

Solar power plants convert sunlight directly into electricity using photovoltaic (PV) cells. When sunlight hits the PV cells, electrons are knocked loose and flow through the cells, generating an electric current.

solar panel farm

Nuclear Power Plants

In nuclear power plants, nuclear reactions release energy in the form of heat, which is then used to produce steam from water. The steam drives a turbine connected to an electric generator, converting the mechanical energy into electricity. Currently, nuclear power plants are powered by fission reactions (splitting atoms), but scientists are working hard to generate consistent electricity using fusion reactions (combining atoms).

Geothermal Power Plants

These power plants generate electricity by tapping into the Earth’s internal heat. They use hot water or steam from the Earth’s interior to produce electricity to drive a turbine connected to an electric generator.

Biomass Power Plants

Biomass power plants burn organic materials such as wood, agricultural waste, and animal waste to produce steam. The steam drives a turbine connected to an electric generator, which generates electricity by converting the mechanical energy into electricity.

Ocean Energy

This includes both wave power, which uses the energy from waves to generate electricity, and tidal power, which uses the energy from rising and falling tides.

Each method has advantages and disadvantages in terms of cost, environmental impact, scalability, and reliability. The choice of method depends on factors such as the availability of resources, the specific needs of the region, and government policies.

The Evolution of Electricity Generation

How is energy made? The journey of electricity generation has been incredible, from humble beginnings with static electricity to today’s advanced electric power grids.

Early Discoveries

The history of electricity began with the ancient Greeks, who observed that rubbing amber with animal fur created static electricity. The real breakthrough, however, came in 1752, when Thomas-Francois Dalibard, following Benjamin Franklin’s suggestion, successfully extracted electricity from a thunderstorm using a metal rod, demonstrating that lightning was electrical in nature.

The Invention of the Battery and Electromagnetic Induction

A major milestone was reached in 1800 with Alessandro Volta’s invention of the voltaic pile, the first battery that produced a continuous electric current. Later, in 1831, Michael Faraday discovered electromagnetic induction, which is the generation of an electric current by moving a magnet within a coil of wire. This discovery was pivotal for the development of electric generators, which provide the power to produce electricity on a large scale.

War of the Currents

The late 19th century saw the “War of the Currents” between Thomas Edison’s direct current (DC) system and Nikola Tesla and George Westinghouse’s alternating current (AC) system. The AC system prevailed primarily because it enabled efficient long-distance electricity through high-voltage transmission lines.

The Emergence of the Power Grid

The development of the power grid transformed the electricity industry. Edison built the world’s first power station in New York City in 1882, using coal-fired steam engines to generate electricity. Subsequent decades saw the rapid expansion of electricity generation with larger power plants and new technologies.

Hydroelectric Power and Rural Electrification

The early 20th century saw the rise of many hydroelectric dams and power plants like the Hoover Dam. The Rural Electrification Act of 1936 in the United States also helped bring electricity to rural areas, significantly improving living standards. 

Nuclear Power and Energy Crisis

Nuclear power emerged as a significant electricity source in the mid-20th century. The first commercial nuclear power plant was opened in the UK in 1956. Its adoption accelerated in the 1960s and 1970s, fueled by the oil crisis.

Shift to Renewable Energy

In recent decades, concerns about climate change and fossil fuel depletion have shifted towards renewable energy sources like wind, solar, and geothermal. Advances in both energy storage technologies and smart grids are further propelling us toward a sustainable energy future.

Emerging Electricity Generation Technology

Once you know how electricity is generated, it’s important to understand that emerging technologies play a pivotal role in shaping the future of electricity generation. With advancements in materials science, engineering, and technology, newer and more efficient methods of generating electricity are continually being developed. These novel technologies are not only more efficient but also hold the potential to drastically reduce the environmental impact of energy production.

Tidal and Wave Energy

Tidal power plants use the regular rise and fall of coastal tides to generate electricity. On the other hand, wave energy converters capture the energy of ocean waves, using the up-and-down motion of waves to generate electricity.

Hydrogen Fuel Cells

Hydrogen fuel cells convert chemical energy from hydrogen into electricity, emitting only water vapor as a byproduct. This clean technology holds promise for various applications, including power generation.

Global and Regional Electricity Trends

Globally, fossil fuels, predominantly coal, have been the leading sources of electricity. However, with rising concerns over climate change, technological advancements, and policy shifts, renewables are making significant strides.

In the United States, for example, the electricity landscape has evolved over time. Historically reliant on coal power, the country has seen a substantial shift towards natural gas electricity generation and renewables, particularly solar and wind power. 

Within countries, the primary source of electricity can also vary by region due to factors like resource availability, energy policies, and infrastructure development. Thus, when pondering, “Where does my energy come from?” it is essential to consider regional variations.

Environmental Considerations

As the global community grapples with climate change and ecological degradation, the transition to cleaner, renewable sources of energy is becoming increasingly crucial. Fossil fuels, especially coal, are major contributors to greenhouse gas emissions, air pollution, and other environmental issues.

The shift towards renewables not only reduces carbon emissions but also minimizes other adverse environmental impacts. Wind and solar power, for instance, have a significantly lower environmental footprint compared to fossil fuels.

Challenges and Opportunities

Transitioning to a sustainable energy future is a complex endeavor that involves addressing numerous challenges, including:


Solar and wind energy are intermittent sources of renewable generation, dependent on weather conditions. Overcoming this challenge requires innovative energy storage solutions and grid enhancements.


Although the costs of renewables have decreased dramatically, they can still be higher than fossil fuels in some cases. Continued investment in research and development is needed to drive down costs further.

texas power lines


Transitioning to renewable energy often requires substantial investments in new infrastructure, including power plants, transmission lines, and storage facilities.

Despite these challenges, the transition to renewable energy offers numerous benefits, including environmental preservation, energy security, and job creation.

Policy and Regulatory Considerations in Electricity Generation

Government policies and regulations play a crucial role in shaping the world’s electricity and generation landscape. They influence the adoption of renewable energy sources, the development of new technologies, and the overall direction of the energy sector.

Promotion of Renewable Energy

Governments worldwide have implemented policies to promote renewable energy sources like wind, solar panels, and hydropower. These policies include tax incentives, feed-in tariffs, and renewable portfolio standards (RPS). For example, the Investment Tax Credit (ITC) in the United States provides a tax credit for solar energy systems, significantly reducing the cost for homeowners and businesses. Feed-in tariffs guarantee a fixed price for electricity generated from renewable sources, making it more competitive with fossil fuels.

RPS, adopted in many states in the US, require electric utilities to source a certain percentage of their electricity from renewable sources. These policies have been instrumental in increasing the adoption of more renewable energy resources.

Carbon Pricing and Emission Regulations

Carbon pricing, either through carbon taxes or cap-and-trade systems, is another policy tool used by governments to reduce greenhouse gas emissions. By putting a price on carbon, these policies incentivize the reduction of fossil fuel use and promote cleaner energy sources. For example, the European Union’s Emissions Trading System (ETS) has helped reduce emissions by capping the total amount of greenhouse gas companies can emit.

Emission regulations, such as the Clean Air Act in the United States, set limits on pollutants like sulfur dioxide and nitrogen oxides emitted by power plants. These regulations have led to the retirement of many coal-fired power plants and spurred investment in cleaner energy sources.

Research and Development Support

Government support for research and development (R&D) is essential for advancing new energy technologies. Grants, tax credits, and public-private partnerships can help drive innovation in areas like energy storage, smart grids, and advanced nuclear reactors. For example, the US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) funds high-potential, high-impact energy technologies that are too early for private-sector investment.

Market Deregulation

Some governments have deregulated electricity markets to increase competition and drive down prices. In deregulated markets, consumers can choose their electricity provider, leading to more renewable energy options. However, deregulation can also pose challenges, such as price volatility and the need for robust oversight to prevent market manipulation.

Impact on Electricity Generation 

Government policies and regulations significantly impact the electricity generation landscape. By promoting renewable energy, reducing emissions, supporting R&D, and fostering competition, governments can help shape a more sustainable and resilient energy sector. Balancing the needs of consumers, industry, and the environment is essential for achieving a successful energy transition.

Electricity Trends, Consumption Patterns, and Other Electricity Generation Statistics

As we analyze the electricity generation trends, energy consumption patterns, and other electricity generation statistics, it is crucial to understand the broader context in which these changes are occurring. The transition to a more sustainable and reliable energy system involves addressing challenges like energy security, affordability, and environmental sustainability while meeting the growing electricity demand. Keeping this context in mind, let’s look closely at each. 

Global Electricity Generation Trends

Transition to Renewables

There has been a significant shift towards renewable energy sources like wind, solar, and hydropower for electricity generation. As of 2022, renewables accounted for nearly 30% of global electricity generation, according to the International Energy Agency (IEA).

renewable energy by country in 2019

Increasing Electrification

Electrification of various sectors, such as transportation and heating, has been a global trend. Electric vehicles and heat pumps have become more popular, increasing the demand for electricity.

Industrial Demand

Industry remains a significant consumer of electricity, particularly in sectors like steel, chemicals, and mining.

Residential and Commercial Use

In the residential and commercial sectors, lighting, appliances, and cooling are the primary electricity consumers. There has been a trend towards greater energy efficiency in these areas.

Electricity Generation Statistics

Global Electricity Generation

According to the IEA, global electricity generation in 2022 was around 29,165 TeraWatt-hours (TWh). This represented a 2.2% increase from the previous year.

Renewable Electricity Generation

Hydropower is the largest source of renewable electricity in the world, followed by wind and solar. The IEA reported that renewable electricity generation increased by 8% in 2022, reaching almost 300 GW. 

Coal-Fired Electricity Generation

Coal-fired electricity generation decreased by about 8% in 2022 in the United States. The decline in coal production was offset by a rise in natural gas generation and significant growth in renewable energy sources. Globally, however, coal-fired power generation rose by nearly 2%.

Natural Gas-Fired Electricity Generation

The contribution of gas-fired generation to global electricity generation remained largely steady, accounting for over 20% of the total.

Nuclear Electricity Generation

Nuclear power provided about 10% of the world’s electricity in 2022. In addition, the capacity for nuclear power increased by about 1.5 GW globally.  Nuclear power has remained relatively stable as a source of electricity generation, providing a significant share of the electricity in countries like France, the United States, and China.

Choosing an Electricity Company in Texas

The generation of electricity is a multifaceted process that involves diverse sources and technologies. Understanding the intricacies of electricity generation provides valuable insights into the current energy landscape and the path toward a sustainable future. As the world seeks to address climate change and transition to cleaner energy sources, the choices we make regarding electricity generation will shape the future of our planet.

BKV Energy, as a key player in the Texas energy sector, plays a crucial role in this transition. You can contact the helpful team at BVK Energy anytime to get more information, discuss your electricity needs, and learn about our energy plans.